
www.manaraa.com

1280 IEEE TRANSACTIONS ON SOFTWARE ENGINEERLNO. VOL. 15. NO. IO. OCTOBER 19139

A Formal Model for Software
Project Management

LUNG-CHUN LIU AND ELLIS HOROWITZ

Abstract-A model called DesignNet for dexribing and monitoring
the software development process is presented. Tbis model utilizes the
AND/OR graph and Petri net notation to provide the description of a
project work breakdown structure and tbc specigcation of relation-
ships among different project information types (activity. product, re-
souree, and status report information). Tokens are objects with spe-
cific properties. Token propagation through structural links allows
aggregate tnformotion to be collected automat&ally at different levels
of detail. The transition tiring is a nonvolatile process and creates new
token instances with time dependent information. The typed places,
together with connections among them, defines the static construct of
a project. Whenever transitions are fired, the project execution history
is recorded by the token instances created.

Using the model, we have provided definitions for basic properties
of a successful project, namely connectedness, plan complete, plan
consistent, and well-executed. We have given algorithms for comput-
ing these functions and shown that the computing time is linear in tbe
size of the project. This assures lhat any system based on DesignNet
should be able to compute these functions efficiently. Finally, we have
shown bow the waterfall life cycle model maps onto a DesignNet and
the implications for project planning, cost estimation, project network
construction, reinitiation of activities, and traceability across the life
cycle. Other life cycle models can be equally treated.

Index Terms-Software development, software project manage-
ment.

I. THE SOFTWARE PROCESS MODEL

R ECENTLY there has been a great deal of discussion
and concern about the lack of an appropriate model

for the development of large-scale software [I], [4], [7].
[131, [191. Why should we attempt to develop models of
the software development process? One reason is that by
having a model we can understand for ourselves and ex-
plain to others the various steps that we must go through
before completing a project. So a model is a means of
communication between the developers and the customer
and between the developers themselves. Another use of a
model is for assisting in the management of the process.
A model can provide management with a set of points
(milestones), that can be examined to determine the rate
of progress of the project. A third advantage of a model
is that it gives software engineers a foundation for build-

Manuscript received February 8, 1988: revised July 29. 1988. Recom-
mended by W. Royce.

L.-C. Liu was with the Department of Computer Science, University of
Southern California. Los Angeles. CA 90089. He is now with Cadence
Design Syslems. Inc.. Santa Clara, CA 95054.

E. Horowitz is with the Department of Computer Science. University
of Southern California. Los Angeles, CA 90089.

IEEE Log Number 8930133.

ing tools that will support and enhance the software pro-
cess.

The traditional model for software development is the
so-called waterfall model. A complete picture of this
model is found in (19, pp. 3381 and as it has been re-
printed so often we will not reproduce it here. The water-
fall model views software development as a manufactur-
ing process. Each step is a phase, and the completion of
one phase leads to another. Each phase has inputs from a
previous phase and outputs (some of which are deliver-
ables), that it produces. These outputs are used by man-
agement for tracking the progress of a project. For ex-
ample, Royce lists six types of documents as outputs:

l software requirement document
l preliminary design specification
l interface design specification
l final design specification
l test plan
l operating instruction manual.
The waterfall model is often shown with back pointing

arrows as well as forward pointing arrows, acknowledg-
ing that the manufacturing model captured in the waterfall
chart is not precise, and that previous phases may be re-
turned to. Royce also emphasizes that the waterfall chart
is not intended to preclude prototyping.

Criticisms of the waterfall model have appeared in sev-
eral places, e.g., [4], [13], who say that

l it is foolish to believe that one model is appropriate
for all software development projects,

9 there is inadequate modeling of the fact that require-
ments change,

l there is no modeling support that involves the end
users in the development process,

l it fails to treat software development as a problem
solving process and therefore offers little insight into the
actions and events that precede the finished products.

Agresti develops three alternative models, called I)
prototyping, 2) operational specifications, and 3) trans-
formational implementation. After studying these alter-
natives, Curtis et al. conclude that these models are based
on technologies that are new and unproven and hence it
is unclear whether they will scale up to industrial size.

It is our belief that a single model may not exist which
will perfectly describe the software development process
from all angles. However, for the purpose of this paper
we would highlight these half dozen features that we feel
are essential.

0098-5589/8911000-1280$01.00 @ 1989 IEEE

SPRUCE with pernk.tion & copyright w,,=p. Further reproduction prohlbitsd.

www.manaraa.com

LIU AND HOROWITZ: SOmWARE PROJECT MANAGEMENT

1) The model must adequately describe the fact that
software development is a design process. Design is in-
herently an evolutionary process where steps are contin-
ually returned to, and moreover, sometimes steps are en-
tirely abandoned and new steps inserted.

2) The model should be able to include the fact that a
large-scale software development project is inherently a
parallel process with many people undertaking tasks
simultaneously.

3) The model should be able to indicate that a diverse
set of conditions must exist before an activity can be un-
dertaken.

4) The model should be able to indicate all artifacts
that are produced at various points in the process.

5) If an activity fails, the model should be able to in-
dicate the activities and resources that are affected. Af-
fected activities may have to be re-executed.

6) The model should be able to indicate the extent and
nature of resources involved in a subtask, including pco-
pie. consumable, and nonconsumable resources.

In this paper we propose a model that attempts to satisfy
all of these criteria. This model is a hybrid model which
utilizes AND/OR structure operators to describe the work
breakdown structure and Petri net notation to represent
the dependencies among activities, resources, and prod-
ucts. It not only provides the project staff with a structural
view of the project information, but it also assists the
project manager in monitoring progress. Before the model
is formally presented, we will briefly review the basic def-
initions of project management and their relation to soft-
ware projects, Then AND/OR graphs and Petri nets are
surveyed.

II. THE TRADITIONAL ELEMENTS OF PROJECT
MANAGEMENT

A. Basic DeJnitions of Project Managemeni

A project is composed of a series of activities directed
to the accomplishment of a desired objective which usu-
ally results in the delivery of a system or product. A proj-
ect will generally have a minimum set of features includ-
ing:

l a specific objective to be completed within certain
specifications

l defined start and end dates
l funding limits (budget)
l consumption of resources (i.e., money, people,

equipment).
An activity is a task with a well-defined beginning and

a well-defined end that can be performed by a single func-
tional entity. An event (also called milestone) is an oc-
currence at a point in time that signifies the start or com-
pletion of one or more tasks or activities.

A work break-down structure (wbs) is a graphic por-
trayal of the project, exploding it in a level-by-level fash-
ion down to the degree of detail needed for effective plan-
ning and control. It must include all deliverable end i tems
(equipment, facilities, services, manuals, reports, and so

on) and the major functional tasks that must be per-
formed. An example wbs taken from a software project is
shown in Fig. 1. The root node is decomposed into six
major tasks according to steps in the traditional software
development life cycle.’ Several tasks are further decom-
posed into the next level tasks. Typically many tasks will
extend several levels deep, but only a few levels are shown
here for simplicity.

Project management is the mixture of people, re-
sources, systems, and techniques required to carry the
project to successful completion, see, e.g., [12], [2]. The
goal of project management is to accomplish the project
before the designated deadline, within the budget, and
utilizing the existing resources efficiently. Symptoms
caused by poor project management include: late comple-
tion, penalties, cost overruns, project staff turnover, du-
plication of effort, and inefficient use of functional spe-
cialists. Innovation of project management tools is
especially crucial for design projects which are character-
ized as applying new technologies to develop new prod-
ucts in an uncertain environment.

To make these definitions concrete, consider Fig. 1
again. The sample project is: ro develop a spreadsheet
package. A sample task is: to design and build a plotter
driver for the spreadsheet package. This task is broken
into a sequence of tasks that extends across the wbs in the
following order:

1) The format of the graphics command file is deter-
mined as an activity of the system speciJicution task.

2) Once step 1 is completed, an experienced system
programmer, a plotter programming manual, and fund-
ing, are available, the plotter driver design task can be
initiated.

3) After design is completed, the coding phase can he-
gin.

4) When the driver is finished and test material has been
prepared, finctional testing can be started.

5) At any time, if the graphic command format (spec-
ification) needs to be changed, return to step 2.

6) If functional testing shows any failure, return to step
3 and redesign the plotter driver.

7) If the plotter malfunctions, submit a proper request
to the equipment support department and temporarily sus-
pend the testing activity. The testing staff may be as-
signed to other tasks during this period.

There are several deficiencies one can identify in at-
tempting to use the wbs for modeling a software project.

l There is no provision for expressing resources (such
as a plotter manual and programmer) that must be avail-
able.

l There is no explicit representation of the fact that
many activities are being pursued concurrently.

l There is no provision for indicating when an activity
is re-executed, as described in steps 5 and 6, or sus-
pended, as in step 7.

‘A wbs for recently proposed alternate life cycle definitions is easily
constructed.

www.manaraa.com

Pig. I. A sample work breakdown structure.

l There is no provision for removing activities and B
adding new ones. I
B. The Traditional PERT/Gantt Models

There arc several traditional project planning and con-
trol models that are used and it is instructive to examine
them [S], [6].

Most lkely tit-m Pe8aimiilictiie

77te Gantt Model: In this scheme project activities are
Pig. 3. Beta distribution for PERT activities.

represented as lines on a calendar oriented chart, with
special marks to indicate major milestones and activities From the beta distribution one may derive the following
that cannot be delayed without delaying the entire project equations:
(critical activities). In Fig. 2 you see a sample of a Gantt
chart. Some special features to notice are: the time scale mean for activity time = (a + 4m + b)/6

on the top line, how the critical activities are highlighted variance for activity time = [(b - a)/6]‘.
with double bars, and how slack time is shown as a series
of dots. See [6] for more details. C. Inadequacies of the Existing Models

The Critical Path Method (CPM): This approach em- All of these three approaches, Gantt, CPM, and PERT,
phasizes the interconnections between activities, namely focus on the time scheduling of activities. The underlying
their predecessors and successors. The collection of ac- graph representation makes the computation of useful
tivities and links forms a directed acyclic graph. Each ac- scheduling functions straightforward. However, we have
tivity is assumed to be defined by two events: the start of already observed that this simple formulation does not
the activity and the completion of the activity. The order capture important characteristics of a design project, with
in which activities are,done depends on predecessor and the consequence that the schedule often goes out-of-date.
successor relationships between the events and the activ- Having looked at the traditional models, we can summa-
ities. rize their deficiencies:

Using the Gantt model or the CPM approach one may 9 None of these models provides the information that
derive algorithms for computing certain functions over the would permit the manager to analyze and reason about the
project data. Given project start, project end, and activi- progress of activities.
ties’ duration, algorithms can compute the following in- l Current models are inadequate for representing the
formation for each activity: 1) earliest starting time, 2) wbs as an integral system component.
lasting starting time, 3) earliest completion time, 4) latest l Although activity dependencies handle predecessor
completion time, 5) maximum available time, and 6) activity completion, they do not include the notion of
slack; see [1 l] for details. boolean conditions.

The PERT Model: The Program Evaluation and Re- l Current models are unable to regenerate and resched-
view Technique (or PERT) is related to the CPM ap- ule activities automatically.
proach. However, rather than a fixed start and end date l Current models are not capable of providing disjunc-
for each activity, three time estimates are made for activ- tive dependency specification.
ity time: 1) the probable earliest completion time, 2) the l Current models do not record the events that trigger
probable latest completion, and 3) the most probable the start of an activity.
completion time. Time is measured by random variables
with an assumed probability distribution. Thus the activ- III. SOME POTENT~ALLV USEFUL MODELS

ity time is defined as a random variable with a beta dis- In this section we provide a brief introduction to two
tribution as shown in Fig. 3. computational models that we intend to use to describe

Lxml.z3wadulm~l

ry1* hwe7 Ir1’1W Alqr’lw7 se#l(H7
c : : : : : : : : : I
c-, .,.. ̂ ..,,._. ^ ., .1 ..^,. . ..*
-
t-

-,
-

-
x >

-
-

.

I282 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. IS. NO. 10. OCTOBER 1989

Fig. 2. A sample Gantt chart

Reproduced with perrisoion of copyright OWM~. Further reproduction pmhibitsd.

www.manaraa.com

LHJ AND HOROWITZ: SOFTWARE PROJECT MANAGEMENT 1283

the software development process. Neither model by it-
self is adequate to describe this process. However, as we
shall see, in combination they correct for all the deficien-
cies measured at the end of Sections I and 11.

A. AND-OR Graphs
AND-OR graphs are used in artificial intelligence to

model a task in terms of a series of goals and subgoals
[21]. Each goal is represented by a node and its successor
nodes are, in some sense, ‘more primitive goals. Those
goals. which can be satisfied only when all of their im-
mediate subgoals are satisfied, are represented by AND
nodes. Other goals, which can be satisfied when any of
their immediate subgdals are satisfied, are represented by
OR nodes. In many applications, the graph is usually gen-
erated at run-time while the program is attempting to sat-
isfy the main goal. AND-OR graphs have also been pro-
posed as a model for describing CAD/VLSI systems [141.
An AND-OR graph is a directed, acyclic graph containing
three types of nodes:

1) An AND node denote an object that is an aggrega-
tion of all of its successor nodes.

2) An OR node denote an object defined by only one
of its successor nodes.

3) LEAF nodes denote atomic entities. They have no
outgoing arcs.

During its initiation, a software project is usually de-
composed top-down until the software functional ele-
ments are sufficiently small to be estimated, planned, and
executed. Establishing a wbs becomes the major task in
the early stage of software development and a represen-
tation scheme is required. The wbs is a directed acyclic
graph, so it makes sense to examine the AND-OR graph
to see if the extension of AND/OR nodes produces addi-
tional modeling power. The traditional wbs essentially has
only AND nodes. Adding the idea of an OR node would
be an improvement, but a small one. The problem of mul-
tiple instances of the wbs is not solved, the problem of
parallel activities is not addressed, and the problem of the
activities changing radically is not addressed.

B. Petri Net Model
The Petri net model is an abstract model for describing

and analyzing information and control flow in asynchro-
nous concurrent systems [161. The relationships between
the parts of a system can be represented by a graph or
network. The graph consists of two types of nodes: places
(represented by circles) where one or more to&ens (rep-
resented by small dots) can reside and the transifions (rep-
resented by bars) which can befired to move tokens from
inputs to outputs. A Petri net with tokens is called a
marked Petri net and the number of tokens in a place is
called the marking of that place. A transition is enabled
when all of its input places have tokens. The firing of a
transition causes tokens to be moved from their input
places to their output places.

Fig. 4 shows the Petri net of a typical send-receive
mechanism in a communication system. It models three

smk Md*a recavm
Fig. 4. Petri net of a sender-receiver system.

parts of the system: the sender, the receiver, and the me-
dium. Initially, two tokens are placed in the net. This is
called the initial marking of the Petri net. The sender is
in processing state (i.e., formatting a message according
to a designated protocol). The receiver is in a ready-to-
receive state waiting for any incoming message. Once a
message is formatted (the new command formatted tran-
sition is fired), the sender will transit to a ready-to-send
state. When the message is transmitted through the com-
munication medium, the send-message transition is fired
and two tokens are created, one to the wait-for-response
place on the sender side, the other to the message-sent
place on the medium. Now the receiving message transi-
tion on the receiver side can be fired and the receiver
transits to message-received state. After the message is
verified, receiver sends an acknowledgment response to
the sender and starts to process this message. When this
response is received by the sender side, the sender goes
back to processing state and is ready to accept any further
request. When the processing of the message is finished,
the receiver also goes back to ready-to-receive state.

In this example, static properties of a system are mod-
eled by the graphical representation of a Petri net. Dy-
namic properties of a system result from its execution and
can be determined by the net graph, the initial marking,
and the transition firing rules. The net graph models two
aspects of systems: events and conditions, and their re-
lationships [161. Tokens in places denote the existence of
certain conditions. The fact that these conditions hold may
cause the occurrence of certain events. Firing a transition
can be considered as the happening of an event. It may
change the state of the system, causing some conditions
to cease holding and others to begin to hold.

Formally, a Petri net C is defined as a four-tuple C =
(P, T, I, 0). P (the set of places) and T (the set of tran-
sitions) are the two major components of a net. They are
associated with the circles and bars in a Petri net graph.
Directed arcs from the places to the transitions and from
the transitions to the places are represented by the input
and output functions. The input function I defines, for
each transition tj, the set of input places for the transition
I(rj). The output function 0 defines, for each transition
tj* the set of output places for the transition O(tj). A

www.manaraa.com

1284 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. IS, NO. Ill. OCTOBER IYRY

marking vector p = (~1, pr, * * - , p,,) gives the number jects. However, it only describes the vertical structure.
of tokens in a place for each place at a particular time. The information involved in the software process consists
The number of tokens in place pi is pi. A Petri net C = of several types, namely, the product-both the internal
(P, T, I, 0) with a marking p becomes the marked Petri documentation and deliverable end times, the activity-
net, M = (P, T, I, 0, p). carried out to accomplish the project, the resource-con-

The next-state function 6 defines the change in state by sumed during the execution of the project, and the status
firing a transition. It changes the marking of the Petri net report-issued at various checkpoints. The AND/OR
~1, to a new marking cc’. If ti is enabled in marking CL, then graph model does not provide the dependency relation-
S(p, tj) = p’, where cc’ is the marking that results from ships among different information types. Since for each
removing tokens from the input of rj and adding tokens to information type, an associated wbs can be constructed
the outputs of tj. Two sequences result from the execution with it, we have a set of wbs’s represented in AND/OR
of the Petri net: a sequence of markings (PO, p’, cc’, * * *) graphs. Without further structural connection, we cannot
and a sequence of transitions (~~0,. qct,, tjtz,, - - .) such know what resources are utilized during the execution of
that s(kLk, rjo,) = $+’ fork = 0, 1, 2; * *. an activity to generate the required product. There is also

Since the Petri net model is a more powerful model than no traceability among information in different phases.
finite-state machines, many analysis questions turn out to Several managerial questions, such as: what is the asso-
be unsolvable or solvable at a high cost requiring expo- ciated specification for a specific code module, and what
nential time and space. Several subclasses of Petri net pose responsible staff need to meet if a portion of the require-
restrictions on its modeling ability in the hope that the ment is not met, cannot be answered.
decision power will be increased [161. There are also sev- If one tries to apply the Petri net model directly to soft-
em1 extensions of Petri nets proposed that either increase ware project management, this is also inadequate in sev-
the modeling power or adapt to certain types of applica- eral aspects. Suppose a place is used to represent a planned
tions. Some extensions add a predicate to transitions and activity and a token inside it means that this activity is
associate attributes with tokens to represent value-depen- currently active (being executed). Related information,
dent semantics. In [22], a modified Petri net model is used such as when it is started, how soon it is expected to fin-
to describe a distributed software system design represen- ish, and how much it contributes to the overall project
tation. A method [151 for translating Petri nets into a spe- cost, must be attached to this token. But, a token only
cial procedural language named XL/ I which can, in turn, assumes a boolean value condition. Associating propcr-
be optimized and translated into existing compiled lan- ties with tokens enables the net to carry more data flow
guages has also been presented. information. Thus, nodes or places in a Petri net need to

Another extension to the classic Petri net definition is be of several different types. In our proposed model, a
to incorporate the notion of time. In the extended model token is defined as,a composite object that carries more
of [17], transitions are used to model processes and the information.
firing of a transition becomes an event with a duration Second, the execution of a Petri net is nondeterminis-
equal to the execution time of the process. A similar ex- tic. If more than one transition is enabled at any time, it
tension was made by [3] with the exception that places is not predictable which one will fire first. This makes it
are used to represent processes. The execution of a pro- more complicated to analyze the properties of a system.
cess is modeled by a transition representing the instanta- In an actual implementation, we can associate an execut-
neous start of execution with a directed arc to a place rep- able procedure with each transition. The procedure will
resenting the condition of that process being in execution. be invoked whenever the transition is enabled and deter-

In summary, there are several advantages of modeling mine globally what transition to fire first if more than one
a concurrent system using Petri nets. Its graphical repre- arc enabled. This approach is explained in the next sec-
sentation provides an intuitive and informal view of the tion. The nondeterminism is eliminated via this mecha-
underlying system behavior. The existence of analysis nism.
techniques allows the designer to derive the properties of Furthermore, the Petri net model does not provide for
a system and determine the complexity to verify whether the representation of aggregates of nodes. In a knowledge
the modeled system has such properties. The ability to representation scheme, some properties of higher level
model a system hierarchically facilitate the designer to nodes are defined through aggregate functions over prop-
apply top-down or bottom-up approaches during the de- erties of lower level nodes. For instance, the cost of a task
sign phase. It is especially suitable for monitoring prog- is a summation of the cost of its constituent activities and
ress of concurrent activities with an extension of the time the completion time of a task is the latest completion time
domain as in [3]. This gives rise to further investigation among its constituent activities. This capability should not
of its potential application in modeling the software de- be confused with the hierarchical modeling in a Petri net.
sign process. A Petri net model allows an entire net to be replaced by

C. Inudequacies of These Models
a single place or transition for modeling at a more abstract
level. It also allows places and transitions to be replaced

The hierarchical nature of the AND/OR graph model by subnets to provide more detailed modeling [161. Thus
provides a structural view into the modeled design ob- it cannot be directly used for modeling the wbs.

lkpmduoed wltb permission of copyright ownel-. Further reproduction prohibited.

www.manaraa.com

LIU AND HOROWITZ: SOFTWARE PROJECT MANAGEMENT

To keep track of the project execution history for later
reasoning, the token flow through the net must be re-
corded. The transition firing in a Petri net is volatile. This
means once a transition is fired,. the tokens in its input
places are removed. There is no way to inquire if a token
had existed earlier at a p!ace. It does not provide for mul-
tiple instances of tokens in the net. Thus it cannot be di-
rectly used for modeling the ‘event that occurs when an
already executed activity now needs to be re-executed.

, IV. A. HYBRID MODEL FOR SOFTWARE PROJECT
MANAOEMENT

In the first subsection we present the formal definition
of DesignNet.* In the second subsection we show how the
waterfall model and a complete W/X is mapped onto a
DesignNet. The third subsection shows how the model
supports iterative process such as project replanning and
project history. The final subsection formally defines the
notions of connected, plan complete, plan consistent, and
well-executed. It then gives efficient algorithms for their
computation.

A. The DesignNet Model
Basically, the DesignNet model follows the terminol-

ogy used in AND/OR graphs and Petri nets. We will give
an introductory example and illustrate how a portion of a
software project can be mapped onto this model. A formal
definition is given after this brief introduction.

A DesignNet consists of a set of places, a set of struc-
tural operators, and a set of transitions. Places are typed.
A token of a specific place type can only represent infor-
mation of that type. Four place types are defined includ-
ing activtty, resource. product, and status report. Struc-
tural operators connect places of the same type on two
adjacent levels where the lower level places are the de-
composition of the higher level place. The hierarchy re-
sulting from the connection of structural operators is the
w&r of the project. Prerequisite conditions (products and
resources required) before an activity can start and the
products generated by an activity are linked to activities
by transitions. This linkage defines the dependencies
among life cycle phases. The firing of transitions creates
new instances of tokens and simulates the project execu-
tion process. Each token is associated with time depcn-
dent information and represents an occurrence of an iter-
ation in the software development process. For example,
tokens in a product place denote various versions of that
product.

An example of a DesignNet is shown in Fig. 5. The
five activity places activity, design & implementation,
testing, driver design & imple., and driver testing to-
gether with the AND operator firm an activity wbs. The
product places graphic command spec., test plan & pro-
cedure, driver code, operation manual, baseline code,

‘This nanrc is hased on its applicability to a design oriented project. It
should not bc confused with only the design phase of the software devel-
opment process.

and version description, also form a product wbs. The
driver design % implementation activity is initiated either
when a new version of the graphic specification is gen-
erated or when the testing shows a failure. Both situations
require the resource, system programmer, to be involved
in the design task. Other elements in this figure, such as
the concepts of place type, instantiated tokens, aggrega-
tion with structural operators, and transition firing rules,
will be explained in the following paragraphs.

Formal DeBnition: DesignNets are composed of three
basic components:

l A set of places P, where P is a union of four possible
place types: P, for activities, P, for resources, Pr for
products, and P,, for status report. Specific symbols are
used to represent these place types. An oval represents an
activity place. A punched card symbol is used for the re-
source place, since resources can be considered as input
of activities. Product places are drawn as printed output
symbols as in conventional flowcharts, since they are en-
tities generated after activities are finished. A square box
represents a status report place.

l A set of structure operators S is a union of two types
of operators, an AND operator, S,, and an OR operator
S,, where the operator connects nodes of the same type,
(activity to activity, product to product, resource to re-
source), and the AND operator defines an AND relation-
ship among the successor nodes and the OR operator de-
fines an OR relationship among the successor nodes.
Graphically, an AND structure operator is represented by
a boolean logic AND gate symbol, and an OR structure
operator is represented by a boolean logic OR gate sym-
bol .

l A set of execution transitions T, where T is a union
of .two possibilities, T,, T, where each is an executable
procedure. This makes the model deterministic. 7’, is a
transition to start an activity and T, is a transition after an
activity is completed. In graphical representation, a bar
represents a transition. Since it is clear from the position
of the bar whether it stands for a ‘I% or a Tt transition, no
visual distinction is made between yY and Tf

Places are strongly-typed. Each place type can be fur-
ther classified into several subtypes. For example, the re-
quirement document, preliminary design specification,
interface design specification, code, test plan, and oper-
ating instruction manual are possible subtypes of the
product place type. The to&ens resident in places carry
more information than just a boolean value. For each place
type, a set of properties are defined and any token in a
place becomes a composite object of a specific token type.
For example, a token in a resource place means that a
resource has been allocated in anticipation of an activity
starting. In addition to its allocation status, the following
relevant information can be stored within this token: re-
source type (system analyst, programmer, or technical
writer), skills, home department, unit cost, percentage of
working time available, etc.

Places of the same type form a hierarchical lattice via
the connection of structural operators. There is one place

www.manaraa.com

1286 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. IS. NO. IO. OCTOBER 1989

Fig. 5. An example of the DesignNet.

node denoted as the root and defined to be at level zero.
The AND operator defines the subcomponents of an ag-
gregate entity. The OR operator specifies what altema-
tives are available for a design object. The manner in
which places on adjacent levels are connected is defined
by the four functions: I,. I,,, O,, 0,.

l The function I, represents the set of input arcs for
connecting a place node to an AND operator S,.

l The function I, represents the set of input arcs for
connecting a place node to an OR operator S,,.

l The function 0, represents the set of output arcs from
an AND operator to a place one level above the place
associated with its input.

l The function O,, represents the set of output arcs from
an OR operator to a place one level above the place as-
sociated with its input.

l In the graph representation, the four functions I,, I,,,
&, 0, are represented by the directed arcs from the places
to the. operators and from the operators to the, places, re-
spectively.

The structural operators have two major functions.
First, they allow aggregate information of a higher level
place to be collected from its constiruents. For example,
we can define the cost of a higher level activity as a sum-
mation of the cost from its AND children activities and

the completion time of a higher level activity as the latest
completion time among its AND children activities. Sec-
ond, they allow newly created tokens on lower levels to
propagate upward. Let us use an example to illustrate how
this mechanism works. Suppose we have a product of pm-
gram module pi which is further decomposed into two
submodules p2 and pl as shown in Fig. 6(a). At time i, a
version pzcib of p2 is generated. The AND operator will
automatically create a token instance plci, of p,. This is
shown in Fig. 6(b). At timej, a version P3(j) of p3 is gen-
erated. The AND operator now creates an instance plcj,
which is composed ofp,(:) and p3(j) as Fig. 6(c). Later, at
time k, due to the existence of a new version of p2, a new
version p2(kl is generated. Automatically a token pIa,
which is composed of p2fkj and pwl,, is created as in Fig.
6(d). This mechanism provides valuable assistance for
version control and configuration management.

The relationships among different place types are de-
fined by the connections of transitions. The manner in
which the places on the same level are connected is de-
fined by four functions I,, I/, O,, Or.

l The function I,V represents the set of input arcs for a
transition 7’q, from a place which is of type product or
resource.

l The function !, represents the set of input,arcs for a

Reproduced ulth pwmitrion of copyrlsht owner: Further reproduction prohibited.

www.manaraa.com

LIU AN0 HOROWJTZz SOFTWARE PROJECT MANAGEMENT 1287

(a) 6)

(6 W
Fig. 6. The token propagation thmugh structural operators.

transition T,, from a place which is of type activity or
status.

l The function O,, represents the set of output arcs for
a transition T,, to a place which is of type activity.

l The function Of represents the set of output arcs for
a transition T,, to a place which is of type product.

l In the graph representation, the four functions I/ I,,
O,, O,t are represented by the directed arcs from the places
to the transitions and from the transitions to the places,
respectively.

Note that an activity place is never connected to another
activity place with a transition between them, since T, only
connects product and resource to activity and T,oniy con-
nects activity to product. This restriction avoids establish-
ing the dependencies directly between activities and re-
moves the limitation of the traditional PERT approach that
only allows conjunctive “AND” dependent conditions to
be specified. In Fig. 5, the plotter driver design activity
will be triggered either when a new version of graphic
specification is generated or when the testing shows a fail-
ure. Thus, disjunctive dependencies can be built.

A DesignNet graph D is defined as a five-tuple D =
(P, T, S, 1, 0) where P = {PC,, P,, P,,, P,T)t T = { T,,
Tf}.S= {S,,S,,},I= (4.IpLL) and0 = {O.,,Op
O,, O,,}. Fig. 7 summarizes the symbols used and the’ir
connections,

The DesignNet graph still preserves the bipartite prop-
erty satisfied by Petri nets, since its nodes can be parti-
tioned into three sets (transitions, places, and structural
operators) and in the two subset combinations (P, S, I,.
I,, O,, 0,,) and (P, T, !,, I,, O,,, 9,) each arc is directed
from an element of one set to an element on the other set.
Notice that there is no arc linkage between transitions and
structural operators, the two sets S, T are disjoint. An-
other interesting property is the projection of the net into
subsets of its domain. Removing Tand its connections I,$.
!J, 0,. 0~. we get four partitions (activity. resource, prod-
uct, status report) of the wbs and lose the dependencies
between different information types. Furthermore, if we
want to focus on only one product type, for example the

Fig. 7. DesignNet graphical representation.

program, we can further prune away the undesired prod-
uct types and have a program configuration tree resulting.
Removing Sand its connections I,,, I,,, O,, 0,,, the’bottom
level of the net becomes an activity network analogous to
a PERT chart, but the hierarchical wbs is lost. Thus, the
projection of a DesignNet into various domains provides
different views of a project.

A DesignNet executes by firing transitions. Unlike the
firing of a transition in the traditional Petri net, which
causes tokens to be moved from their input places to their
output places, the transition firing. in a DesignNet is a
nonvolatile process. A token can be in one of three pos-
sible states, active, consumed, or discarded. When a to-
ken was created, it was put in an active state. A transition
may fire if it is enabled. A transition is enabled if each of
its input places has at least one active token in it. Firing
a transition does not remove tokens from its input places.
Instead, it changes the tokens in its input places to a con-
sumed state such that any further firing resulting from the
same token is prohibited. The tokens created in its output
places are put in an active state. While creating new to-
kens, it also checks whether any token in output places is
already in an active state. If there are, then it changes
them to a discarded state. This guarantees that at most one
token is in an active state for any place at any time.

Note that we permit any number of tokens to reside at
a place, and each token would represent an instance of the
place when the token was created. Depending on place
type, the number of tokens inside a place has different
meanings. The number of tokens in an activity place
means that the activity has been executed this number of
times. If we want to know the detail of each execution.
we can inquire for the information associated with an in-
dividual activity instance. On the other hand, the number
of tokens in a product place means that there are so many
versions generated with this product. Each token has a
pointer to the data it represents (e.g., the file name of a
code module). Since a token is not removed (just con-
sumed) after a transition is fired, the number of tokens in
a place will increase monotonically.

To handle the transition firing operation, each transition
can be considered as ‘an executable procedure. When ‘a
new token is created in the input places of a transition,
the procedure associated with the transition will be exe-

www.manaraa.com

1288 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. IS. NO. 10. OCTOBER 1989

Fig. 8. DesignNet of life cycle phases.

cuted. This procedure would check against all the input
places. If ill the input places have active tokens, it per-
forms thejring operation by setting the input tokens to
consumed state and creates new tokens in output places
through instantiation. This mechanism can be achieved by
a triggering operation using object programming tech-
niques .

A marking p of a DesignNet is an assignment of tokens
to the places in that net. The vector IC = (~1, ~2, * * * ,
p,) gives the number of tokens in a place for each place
in the DesignNet and the number of tokens in place pi is
p;,fori = 1, **a, n. Since the transition firing is non-
volatile, the number of tokens in a place will never de-
crease and for a place pi, Pi(r) is greater than or equal to
pifs, for any time t later than the time s. The sequence of
markings (PO, p’, CL*. * -*)atthetimeindexO, 1,2;-*,
together with the information stored with individual to-
kens, gives the execution history of a DesignNet.

With all the previous definitions, a project J can bc de-
fined as a seven-tuple J = (R, P, T, S, I, 0, cc) where P,
T, S, I, 0, ~1 are defined as before and R is the root place
representing the project as a whole. The level next to R,
connected through an AND structural operator, contains
the four activity, resource, product, and status report wbs.

B. Mapping the Waterfall Model onto the DesignNet
The waterfall model [19] for software development

contains six major phases. Different personnel skills and

development disciplines are required for different phases.
Also, each phase has its own product types. Fig. 8 shows
the DesignNet representation of the six development
phases.

This life cycle phase representation works as the top
level of the wbs. The project manager determines what
methodology is used for each phase and defines the struc-
ture and acceptance criteria of the end product. Verifying
functions of these accepting criteria can then be attached
to the finish transition of predefined activity types. In the
initial requirement analysis phase, the user and the sys-
tem analyst arc involved in defining the system specifi-
cation based on the customer contract. Tools for auto-
mating the requirement and specification development,
such as SREM[S], can be used at this stage. During pre-
liminary design, system engineers take the specification
as input and generate the functional design document, the
interface control document and the test plan of each mod-
ule. Special design tools (e.g., PSA/PSL [20]) can he
used at this stage. In detail design and implementation,
programmers translate these design descriptions into code
modules. The code modules together with test plans and
testing procedures generated in earlier stages are then
tested (testing phase) by testing engineers and quality as-
surance staff. When the final product goes into operation.
product control staff and the software manager are in
charge of the update and document change.

For the sake of simplicity, this figure only shows the

Reproduced with pamission of copyright wrier. Further reproduction prohibited.

www.manaraa.com

LIU AND HORDWITZ: SOFTWARE PROJECT MANAGEMENT

transitions which are fired when activities are successfully
executed. If any failure report is issued while an activity
is being executed, proper backtracking transitions to pre-
vious phases are necessary. Such iteration paths are omit-
ted in this figure. However, Fig. 5 shows one example of
this repetition (from driver testing to driver design). In
actual cases, many repetitions will occur and the project
manager can add transitions with appropriate status report
places that loop back to earlier phases.

C. Implications of the Model

This section describes how DesignNet can be used to
facilitate important steps of the software development
process.

Project Planning and Cost Estimation: At the begin-
ning of a software project, the project manager is respon-
sible for choosing the development methodology and de-
fining the typical activity behavior and requirements of
each phase. These definitions are then represented in the
DesignNet model and entered into the system. The
DesignNet of the waterfall model described in the pre-
vious section is just one template for developing the proj-
ect plan. During the planning stage, each phase is decom-
posed into lower level subactivities that inherit the resoure
requirements and product specifications from its parent
activity with some elaboration. This decomposition is
performed until a level is reached such that a concrete
working package can be assigned. Fig. 9 shows a sample
decomposition of the plotter driver design task.

After the w6s has been constructed, the project manager
can invoke the cost estimation function to compute total
project cost bottom-up, level-by-level. In the DesignNet,
a user can attach different heuristic functions to evaluate
properties of aggregate objects. Based on the methodol-
ogy used, a design activity may use the number of person
hours for estimation and an implementation activity may
use number of lines-of-code for estimation. Actually, we
only need to apply estimation functions to bottom level
activities. The cost of intermediate level nodes are sum-
mations of constituent activities’ cost and can be com-
puted automatically. The existence of a w&s greatly re-
duces the manual effort spent on cost computation.

Project Network Construction: The w6s of each phase
may be derived by individual phase supervisors. Some-
how these phases must be combined to produce a single
~6s. Using our model we can connect all the phases into
a single wbs automatically by applying searching opera-
tors to the product places. Since an activity takes products
as input, it can be started only after the activity that gen-
erates the required product is finished. The predecessor
and successor relationships among activities are based on
the document (or product) Row across phases. In contrast
to traditional CPM and PERT approaches, where the de-
pendencies are built directly upon activities and most of
the planning efforts arc spent ,on manually constructing
the network, including product information in the project
hierarchy makes automatic network construction possi-
ble.

Fig. 9. Sample decomposition of a design task.

After connecting all the output product places to the
input places of associated activities in the ~6s. the project
network is constructed automatically and project planning
is then completed. In the meantime, the project manager
can also discover incomplete or redundant parts of the
plan, such as a specification which is not followed by a
design activity, or a test plan that is not used by any test-
ing activity.

lteration and Automatic Activity Triggering: Due to the
nature of a design project, the same3 activity may be ex-
ecuted multiple times depending on various conditions.
To avoid destorying the project history, different token
occurrences of the same activity are created whenever it
is executed. The firing of a start transition of an activity
performs the instantiation operation. Since the activity
only acts as a template, every time its preconditions are
met, the start transition will be fired and create an instance
of the token in the activity place and store the relevant
information with this token.

During the execution of a project, the current project
state is affected only when any token value is changed.
The project progress can be considered as a token driven
process. Unlike the Petri net which is a closed system, a
DesignNet is an open system. All the status report places
and certain product subtype places (e.g., customer con-
tract, change request, and the bug report) accept exter-
nally supplied tokens. Responsible staff will submit to the
system the tokens that reflect events in the process. The
system will react according to the DesignNet definition.

Traceability: Effective management of numerous proj-
ect information is a crucial factor to the success of a soft-
ware project. The information includes activities exe-

,‘Here the “same” activity means the planned activity which nuy hc
executed at different times. Chronologically. two activities executed at dif-
ferent times cannot be the same even though they perform the same job.

www.manaraa.com

1290 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. IS. NO. 10. OCTOBER 1989

cuted, resources consumed, reports issued, documents
generated, plus the relationships between these entities
and linkages across phases. Furthermore, unpredictable
backtracking makes it more difficult to maintain these re-
lationships. DesignNet provides an automatic information
tracking mechanism. With the project history information
being recorded automatically, the project manager can is-
sue queries against the project database to analyze and
reason about the project’s progress. Most importantly he
may query over data that is distributed in several phases.
For instance. to know what code modules are affected with
respect to a specification change, the model can start from
the token associated with that change, trace through all
the design, implementation and testing activities trig-
gered, and then locate the resulting modules.

By tracing through the tokens and links, the model can
derive the answer to several managerial questions. For
example. what activities cause the major delay or cost
overrun? If an activity has been executed often, who has
been reSponsible for it? If we change the requirement for
the plotter output, how much more time and resource will
be needed to complete the job?, What other activities are
delayed? If the project shows some delay, is it possible to
make up the delay by introducing extra resources? If yes,
by adding resources to what activities? When personnel
turnover occurs, can we find the staff who were involved
with an activity executed two months ago?

Complete historical data is the basis for the satisfaction
of an audit. DesignNet also provides the version devel-
opment traceability at a coarse level of granularity. To-
kens in the same place denote different occurrences of that
place. Time dependent properties stored with each token
provide flexibility for building finer level version control.
For example, a version index is stored with the token of
a code product place. We can incorporate any source code
version control system (e.g., SCCS [18]) and use the ver-
sion index to locate the version generated at a specific
time.

Points of CfuriJicution:
l The model is intentionally designed to be passive, in

the sense that it permits the collection of data and it can
report the complete history of the project, but it does not
try to reallocate resources or even to determine when an
activity has been successful or not. All of these latter is-
sues are determined by the project manager or managers.
We do not believe that at this time we know enough about
building tools that automatically determine the allocation
of resources or the definition of activities to satisfy a proj-
ect.

l One should not view DesignNet as an extension of
Petri Net, because there are major differences. In partic-
ular DesignNet is an OPEN system, and some tokens for
certain places are assumed to be provided by project per-
sonnel. Another major difference is that DesignNet is de-
terministic because one needs in a software project to de-
termine whether an activity succeeded or needs
backtracking to previous activities.

l To represent the wbs, the choice was made to use
AND/OR notation as opposed to transition diagrams. The
major reason is because when a lower level place pro-
duces a new token (i.e., the state of the project has been
changed), then that token must immediately be propa-
gated up the wbs. The transition diagram notation does
not fire until all dependent nodes are ready. The more ac-
curate representation of the life cycle is through the use
of AND/OR nodes.

l One must be careful about interpreting the AND and
OR nodes in a DesignNet. When an OR node is used to
connect several subactivities to an activity, the it means
that when only one of those subactivities is done, then the
parent activity is partially done. For example using Fig.
9, when the X-Windows activity is done, and all its parent
activities to the root of the wbs, then even though the wbs
is not completed, it is partially completed and the version
of the software that supports X-Windows can be shipped.
In fact, it may be the case that the root node of the wbs
never reaches a state of completion, but is always par-
tially complete and software is being shipped, but not all
activities are finished executing.

l Another point is that the wbs does not necessarily
reflect the structure of the code. It merely describes the
way in which the activities are divided and the way in
which products are decomposed.

l No plan can ever cover all of the possibilities. For
example, suppose someone quits in the middle of an ac-
tivity. How does DesignNet handle this? The manager
would go into DesignNet and add a Status Report Node
to the activity that has been aborted. He then reports what
has occurred and adds in a transition to an activity that is
to be followed at this point. That activity may be to assign
a new resource and restart the previous activity again, or
he may decide not to return to this aborted activity. Thus
the project plan can still be updated to cover the unanti-
cipated case.

l DesignNet does not explicitly handle resource allo-
cation. In general people are working on multiple projects
at the same time. The problem of optimal allocation is
computationally intensive, and the factors that must be
used to determine allocation are complex and not describ-
able by a network model such as DesignNet. Therefore
we assume that project personnel assign resources to ac-
tivities.

l Although the example in this paper shows the water-
fall model, it is equally easy to incorporate other life cycle
development models into DesignNet.

l Consider the situation when driver testing uncovers
bugs and driver design is restarted. Driver design com-
pletes and the driver is being recoded. when a change in
specification causes driver design to be restarted. How
does DesignNet detect the case that more than one of the
same activity is concurrently active, and how does it re-
solve this anomaly? Detection in DesignNet is straight-
forward. as one can trace from an active node to the fin-
ished product to see if other active nodes exist. However,

Reproduced with pemiosion of copyright w-r. Further reproduction prohibited.

www.manaraa.com

LIU AND HOROWITZ: SOFTWARE PROJECT MANAGEMENT

the model assumes that project personnel will decide
whether to abort one of the activities, or to continue with
both of them.

1291

D. Using DesignNet to Analyze Project Properties

Another application of the DesignNet is to take the
graphical representation of a project, and analyze it for
the presence of desirable or undesirable properties. With
the properties derived from a DesignNet, we can derive
the properties of the project which the net models. A proj-
ect manager can use these analysis techniques to help him
detect any problem concerning project planning or exe-
cution. This section defines several essential properties of
the DesignNet and the algorithms to verify the existence
of these properties are also presented.

Definition: A DesignNet is connected if and only if for
all the places p, there exists a path from p to the root place
R through structural operators and the arcs I,, I,,, O,, O,,.

This property defines project plan connectivity. For a
large project with hundreds of activities, the planning is
usually conducted by several task supervisors concur-
rently and each one builds only a partial wbs of the whole
plan. This property ensures that, after integration, all ac-
tivities contribute toward the accomplishment of the proj-
ect and no irrelevant activity or product is created. To
verify that the DesignNet of a project is well-formed, ap-
ply the following check for every place pi, i = 1.2, - * - ,
n. If pi has no outgoing structural arc and pi is not the root
then stop and the net is not well-formed. Otherwise, for
each outgoing structural arc (an element of I, or I,,), check
if it is directed to a structural operator and there exists an
arc (an element of 0” and 0,) from this operator to an-
other place.

DeJinition: A project is plan complete if and only if its
associated DesignNet is connected and far all intermedi-
czte product places p,,, there exists a transition t, in T, such
that ts takes pi as input and there exists a path from z,$ to
some final deliverable product places.

During the software development process, many types
of documents are generated. Some of them are final de-
liverable products, such as release notes, executable code,
and operational manual. Others am just for internal use,
such as system requirement, interface design specifica-
tion, control design specification, and test plan. We con-
sider the products that are taken as input to some activity
in successive phases as intermediate products. If no activ-
ity takes an intermediate product as input for further pro-
cessing, part of the desired functions will not be imple-
mented and the final developed system will be incomplete.
This property assures the robustness of a plan. To check
plan completeness of a project, apply the following pro-
cedure for each final deliverable product place: mark it as
visited, find the activity place that generates this product,
then mark all precedent product places of this activity as
visited and recursively apply the same checking to these
places. Upon completion, if there still exists any un-

marked product place, the associated project is plan in-
complete.

Definition: A project is plan consistent if and only if it
is plan complete and for each activity place pn. the level
(distance to the root place) of this place is the same as the
levels of its preceding and succeeding activity places.

A rigid hierarchical decomposition requires that at any
level in the hierarchy, each subdivision must be consistent
with other corresponding phases. For example, if there
are three subtasks defined under the specification phase,
the design phase has to be decomposed into three subtasks
and each subtask performs its specific system design func-
tion in correspondence to the subtasks of the previous
phase. If one of the specification subtasks is further de-
composed into several subactivities, the associated design
subtask must also be decomposed into the same number
of subactivities to cover all aspects at the same’ level of
detail. To check the plan consistency of a project, first
compute the level of each activity place and then apply a
similar search algorithm used to check plan completeness.
This time, when tracing activity dependencies, make sure
that the level of each activity along the path is the same.

Definition: A project is well-executed if and only if
there is at most one token in an active state in all places
at any time.

Several possibilities may cause a place to have more
than one token in active state. Consider the plotter driver
design example. If the drive design activity is active and
a system analyst decides to add in new graphic com-
mands, a new design activity will be initiated in response
to this change. Even though this kind of late modification
is discouraged by software design methodology, such sit-
uations do happen regularly in actual practice. However,
if we allow the same activity to be executed by different
personnel based on different versions of input documents
at the same time, it will result in generating consistent
products. One way to resolve this anomaly is to cancel
the current active activity when it needs to be re-executed.
Meanwhile, we have to release the allocated resources,
reschedule the successive activities,. and call a stuff meet-
ing if different personnel are assigned to these two activ-
ities. Transition firing in DesignNet changes a token from
active state to discarded state when it creates a new token
of the same place. This mechanism enforces a project’s
well-executed property. Since the user can attach execut-
able procedures to a transition in a DesignNet, the re-
source release, rescheduling, and staff synchronizaton can
be fulfilled by these procedures.

V. EPILOGUE

Software engineering research has successfully focused
on tools to aid individual life cycle activities, such as re-
quirements analysis or design. Far less effort has been
spent considering how to support the managers of the
software development process. This is surprising, as so
much of what makes large scale software development
distinctive is the large managerial component involved.

www.manaraa.com

Recent work on integrated CASE environments attempts Three functional modules are -implemented on top of the
to place all “useful” information in a common database. DesignNet conceptual layer-the activity scheduling
This has many advantages, one being the ability to query module, the resource allocation module, and the cost es-
over different artifacts of the process and to check consis- timation module. The front end is an X window based
tency between them. The DesignNet model attempts to graphic user interface. Users can browse or update the
bridge the gap between the underlying representation of project information through an object navigator. Its result
data and the interface to the user. Without such a model, and detail design information will be reported in a later
the user is faced with a vast amount of information, but paper.
little organization. We feel that a model that incorporates
the wbs and task reinitiation is essential for effectively ACKNOWLEDGMENT
organizing and tracking the project. We believe that con-
sistency of the data needs a framework upon which one We would like to thank the referees for their helpful
can base algorithms that will work with relative effi- suggestions.
ciency. Roth of these are provided by DesignNet.

DesignNet is a model for describing and monitoring the REFERENCES

software development process. It utilizes AND/OR
structure operators to describe the work breakdown struc- III W. W. Agresti, “What are the new paradigms,” in Nrw Paradigms

for Sofiware Developmenr: Turorial.
ture and Petri net notation to represent the dependencies puter Society, 1986, pp. 6-10.

Washington, DC: IEEE Com-

and parallelism among activities, resources, and prod- 121 B. W. Boehm, software Engineering Economics. Englewood Cliffs.

ucts. Tokens are objects with specific properties. Token NJ: Prentice Hall. 1981: see also 1EEE Trans. Software Enx., Jan.
1984.

propagation through structural links allows aggregate in- 131 J. E. Coolahan, Jr., and N. Roussopoulos. “Timing requirements for

formation to be collected automatically at different levels time-driven systems using augmented Petri nets.” IEEE Truns. Soft-

of detail. The transition firing is a nonvolatile process and ware Enx., vol. SE-g. no. 5, pp. 603-616. Sept 1983.

creates new token instances with time dependent infor-
141 B. Curtis. H. Krasner, V. Shen. and N. Iscoe, “On building software

process models under the lamppost. ” in Proc. 9th Inr. Con$ S&lare

mation. The typed places, together with connections Engineering, Monterey, CA. Mar. 30-Apr. 2. 1987. pp. 96-103.

among them, defines the static construct of a project. [S] C. G. Davis and C. R. Vick. “The software development system.”

Whenever transitions are fired, the project execution his-
IEEE Trans. Software Eng., vol. SE-3, no. I, pp. 69-84. Jan. 1977.

[6] E. W. Davis, Ed., Project Ma~agcment: Techniques, Applications,

tory is recorded by the token instances created. ond Managerial Issues. Industrial Engineering and Management

Using the model, we have provided definitions for basic Press, 1983.
171 M. Dowson.

properties of a successful project, namely connectedness,
“Iteration in the software process.” in Pmt. 9th /nr.

ConjI Sofware Eng,. Monterey. CA, Mar. 30-Apr. 2. 1987. pp. 36

plan complete, plan consistent, and well-executed. We 39.

have given algorithms for computing these functions and 181 W. J. Fabtycky, P. M. Charge. and P. E. Torgetxen, Applied Oper-
ations Research and Management Science. En&wood Cliffs. NJ:

shown that the computing time is linear in the size of the Prentice-Hall. 1984.

project. This assures that any system based on DesignNet (91 E. Horowitz, and R. C. Williamson, “SOWS: A software docu-

should be able to compute these functions efficiently. Fi-
mentation support environment-Its definition.” I&E& Trans. Sofr-

nally, we have shown how the waterfall life cycle model
ware Eng.. vol. SE-12. no. 8. pp. 849-859, Aug. 1986.

[IO] -1 “SOWS: A software documentation support environment-Its

maps onto a DesignNet and the implications for project US%” /E&E Trans. SoBware Eng., vol. SE-12. no. I I, pp. 1076-

planning, cost estimation, project network construction, 1087,Nov. 1986.

reinitiation of activities, and ‘traceability across the life
[I l] E. Horowitz and S. Sahni, Fundamentals of Dam Structures k Pas-

cal. 2nd cd. Rockville. MD: Comouter Science Press. 1985.

cycle. Other life cycle models can be equally treated. I121 H. Ketzner, Projecr Managemenr. A Sysfems Approach 10 Plantliag.

Large software development projects can take many Scheduling. and Conrrolling.
1984.

New York: Van Nostrand Reinhold.

forms and exhibit myriad patterns of behavior. It is there- [13] C. C. McCracken and M. A. Jackson. “A minority dissenting opin-

fore unrealistic to believe that some simple underlying ion, ” in Systems Analysis and Design-A Foundatinn far the 1980s.

conceptual model exists that will explain it all. To make W. Cotterman, Ed. New York: Elsevier. pp. 551-553.

such a model complete, in the sense that it does handle
1141 D. McLeod. K. Narayanaswamy, and K. V. Bapa Rao. “An appmach

to information management for CAD/VLSI applications”. in Prac.

all of the possibilities that may occur, a powerful yet po- ACM-SICMOD 101. Con& Management of Lktu. May 1983.

tentially complicated model is inevitable. DesignNet in- 1151 R. A. Nelson. L. M. Habit, and P. B. Sheridan. “Casting Petri nets

herits the power of the Petri net model, and includes ex-
into programs.” IEEE Trans. So/rware En,q.. vol. SE-g. no. 5. pp.
590-602. Sent. 1983.

tensions that make it suitable for describing the software 1161 J. L. Petkrsdn. “Petri nets.” ACM Compur. Surveys. Sept. 1977.

life cycle. We intend to, and we hope that others will also, 1171 C. V. Ramamoorthy and G. S. Ho. “Performance evaluation of asyn-

develop a software project management system that uses
chmnous concur&t systems using Petri nets,” /&EE Trans. Softwke
Eng.. vol. SE-6. pp. 440449, Sept. 1980.

DesignNet as its base. 1181 M. 1. Rochkind. “The source code control system.” in Proc. First

Currently, we are building a prototype system, called Nat. Conf. Sojiware Engineering, IEEE. New York. 1975. pp.37-
43.

DesignPlan, based upon the proposed model. The under- 1191 W. W. Royce, “Managing the development of large software sys-

lying database support for the system is an object-oriented tems.*’ in Proc. 9111 Inr. Canf. Software En&~eria~. Monterey. CA.

database (Vbase from Ontologic, Inc.) that provides all Mar. 30-Apr. 2. 1987. pp. 328-338.

the object types and triggering mechanisms definition.
l20] D. Teichroew and E. A. Hershey. “PSLIPSA: A computer-aided

technique for structured documentation and analysis of information

1292 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. IS, NO. IO. OCTOBER 1989

Jkproduued with purmiorton c& coWright WWF. Furthur r.uproduction prohibited.

www.manaraa.com

LIU AND HOROWITZ: SOFTWARE PROJECT MANAGEMENT

processing systems.” IEEE Trans. Sojfwrr Eng.. vol. SE-3, no. I,
pp. 4 l-48. 1977.

(211 P. H. Winston. Arfijicid Infelli~mce. 2nd ed. Reading, MA: Ad-
dison-Wesley. 1984.

1221 S. S. Yau and M. U. Caglayan, “Distributed software system design
mprcsentation using modified Petri nets,” IEEE Trms. S&we Eng.,
vol. SE-9. no. 6, pp. 733-745, Nov. 1983.

Lung-Chun Liu received the B.S. degree in com-
puter science from National Chiao-Tung Univer-
sity. Taiwan, Republic of China, in 1980, the
MS. degree in electrical engineering from Na-
tional Taiwan University, Taiwan, Republic of
China, in 1982, and the Ph.D. degree in computer
science from the University of Southern Califor-
nia, Los Angeks, in the area of software project
management, in 1988.

He is now with Cadence Design Systems, Inc.,
Santa Clara, CA. His principal research interests

1293

include: design and application of objecl;oriented databases. project man-
agement tools for software development, and integrated software engi-
neering environments.

Ellis Horowitz received the Ph.D. degree in com-
puter science from the University of Wisconsin.

He was on the faculty there and at Cornell be-
fom assuming his current post as Professor of
Computer Science and Electrical Engineering at
the University of Southern California. Los An-
geles. He has published over 100 rcaearch articles
on subjects ranging from algorithms. data struc-
tures. computer-assisted instruction, and software
engineering. He is also the coauthor of several
popular textbooks.

Reproduced 4th psm,ission of coprright oym,.. Further reproduction prohibited.

www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

